
LIBINTEGRA: A SYSTEM FOR SOFTWARE-INDEPENDENT
MULTIMEDIA MODULE DESCRIPTION AND STORAGE

Jamie Bullock Henrik Frisk

UCE Birmingham
Conservatoire

Music Technology

Lund University
Malmö Academy of Music

Composition and
Performance

ABSTRACT

In this paper we describe a means of storing information
about audio and message processing modules, which is
not software specific. This information includes a mod-
ule description, module instance data, and module imple-
mentation data. A novel XML file format and database
schema are proposed, and we show how a newly devel-
oped library (libIntegra) can be used as a link between per-
sistent storage on a networked server, and an existing soft-
ware environment for audio. The library provides meth-
ods for instantiating and connecting modules in a given
piece of software, and addressing them using Open Sound
Control (OSC) messaging. An example scenario is dis-
cussed whereby the process of module data retrieval, de-
serialization, instantiation and connection is managed from
a remote GUI.

1. INTRODUCTION

libIntegra is part of the Integra project, a 3-year project led
by UCE Birmingham Conservatoire in the UK and part fi-
nanced by Culture 2000 1 . One aspect of Integra is to de-
velop a new software environment to facilitate composing
and performing in the context of interactive and live elec-
tronic music. In general, the project attempts to address
the problems of persistent storage, portability and stan-
dardized intercommunication between different software
(and hardware) systems for electronic music. It is a pri-
ority that all data relating to supported musical works, in-
cluding scores, electronic parts, information about differ-
ent versions and renderings of these works, biographical
data, etc., should be stored on a web-accessible database,
and that this data should be transferable to a variety of
usable target applications.

Integra started as a way of standardising the construc-
tion of modules, and providing a generalised OSC names-
pace within the Max/MSP environment. As such it has
similarity with the Jamoma[3] 2 and Jade projects 3 . How-
ever, it now differs substantially from either of these in

1 http://www.integralive.org
2 http://www.jamoma.org/
3 http://www.electrotap.com/jade

that it has a strong emphasis on software independence,
and persistent storage. Two other projects that aim to
tackle problems that are similar to those which Integra at-
tempts to address are Faust [1][2] 4 and NASPRO 5 . Fur-
thermore, Integra is closely related to documentation and
migration initiatives such as the PD Repertory Project[4],
Mustica[5], and the CASPAR Project 6 , though the scope
of the latter is much wider than that of Integra.

The Integra library is being developed as a foundation
for the software development aspect of the Integra project.
Its purpose is to make it possible to retrieve data (in par-
ticular the electronic sound processing part of the piece in
question - the Max/MSP or PD patch for example) from
the Integra database, and seamlessly load it into the re-
quired pieces of software. It is also our mission that it
should be possible to load the same ’Integra collection’
file (see 2.2) in, or redirect parts of it to, a variety of differ-
ent targets. Once loaded into its given target(s) the mod-
ule collection will be addressable using a common OSC
address space. The library should also support the instan-
tiation of a module collection across multiple target appli-
cations for audio and multimedia.

2. INTEGRA MODULES

The basis of the Integra library is the concept of the Inte-
gra module. Integra modules encapsulate a specific piece
of message or signal processing functionality. A module
could perform a simple task like a numeric addition, or a
complex task like emulating a specific synthesiser. In this
section, we will outline how Integra modules and module
collections are constructed.

2.1. Module construction

The minimum requirement for an Integra module is that
it must have an interface definition. In addition, it may
also have an implementation and module instance data.
Of these, only the implementation is software specific.

4 http://faust.grame.fr
5 http://sourceforge.net/projects/naspro/
6 http://www.casparpreserves.eu/

Field Value
Name Oscillator
Parent Module
Attributes freq, phase
Attribute Unit Codes 1, 2
Attribute Minima 0, 0
Attribute Maxima inf, 6.2831853071795862
Attribute Defaults 440, 0

Table 1. Integra Oscillator interface definition

OSC address Purpose
/oscillator/freq <value> Set the value of the

’freq’ attribute
/oscillator/phase <value> Set the value of the

’phase’ attribute
/module/active <value> Set whether or not the

module is active

Table 2. Integra Sinus module namespace

2.1.1. Module definition

An Integra module definition is data that defines what at-
tributes a module has, and what the characteristics of those
attributes are. An Integra attribute is a symbolic name
with which a value can be associated. The module defi-
nition doesn’t store the actual values of attributes, instead
it stores data about the attributes such as their names, de-
scriptions, supported data types, maxima and minima, and
default values. Typical module definition data is shown in
Table 1.

The parent field is used to show an inheritance relation.
All Integra module definitions could be thought of as class
definitions, the members of which are all abstract (lack
implementation), or interface definitions. The interface of
a given class can inherit the interface of any other class,
and supplement this with additional members. This def-
inition hierarchy is the basis of the Integra database (see
section 4).

2.1.2. Module namespace

A module’s namespace is derived from its definition. The
namespace enables the values of attributes to be set, and
module methods to be called by using a symbolic nam-
ing scheme. From the user’s perspective, this will usually
manifest itself as an OSC address space. The OSC address
space for a sinus module is shown in table 2. The sinus
class inherits the oscillator class interface, which in turn
inherits the module class interface, so all of these must be
reflected in the module’s namespace, and in turn must be
represented in the implementation.

Figure 1. An Integra sine wave oscillator implemented in
PD

2.1.3. Module implementation

The module implementation is the only software-specific
data stored by Integra. It consists of a fragment of com-
puter code, in one or more files, which when run or loaded
by a particular piece of software will perform a specific
audio or message processing task. In order that module
implementations can be used by libIntegra, an implemen-
tation protocol must be devised for each software target.
Integra currently provides implementation protocols for
Max/MSP and Pure Data along with a growing selection
of example module implementations and implementation
templates. In practice, the implementation files are Max
and PD ’abstractions’ that provide a number of compul-
sory methods, and conform to the implementation proto-
col. A typical module implementation is shown in Figure
1.

A SuperCollider class to perform the same task, might
look as follows:

Sinus : Oscillator {
init{
var freq, outPorts, server;
freq = 440;
outPorts = [1];
actions = actions.add(
{|val| this.server.sendMsg(
‘‘/n_set’’, nodeid, \freq, val)});

nodeid = Synth(\Sinus,
[\freq, freq, \outport0, outPorts[0]]

).nodeID;
super.init;
}

}

This implementation is very different from the PD si-
nus, not only because it is implemented in a different mod-
ule host (i.e. SuperCollider), but also because it employs
inheritance to provide much of its functionality. In Super-
Collider we can use inheritance at the level of implemen-
tation to mirror the interface inheritance used in the In-
tegra database, and conceptually between abstract Integra
classes. The PD sinus must implement all of the interfaces
inherited by the sinus class and its parents, right to the top
of the class tree. The SuperCollider sinus only needs to
implement the interface that is unique to it, implementa-
tions of inherited interfaces are inherited from the parent
class: Oscillator.

An eventual aim of Integra is to provide a protocol for
constructing module implementations in a range of differ-
ent software, and to develop a LADSPA/DSSI host that
wraps plugins in an Integra-compliant manner.

2.1.4. Module instance data

Module instance data consists of the run-time state of all
of its variable parameters. This data is stored in mem-
ory by the Integra library whilst a module is in use, and
can be written to an XML file on demand. This data is
stored in the Integra database in the module’s instance ta-
ble. However only one saved state can be associated with
each module instance. If the user wishes to record state
changes over time, then a separate ’Player’ module must
be used to store this data.

2.2. Module collections

An Integra collection consists of one or more Integra mod-
ule instances. A collection can also contain other collec-
tions. These contained collections encapsulate the func-
tionality of a number of connected Integra modules into
a single entity and can be addressed and connected as if
they were normal module instances. The facility is pro-
vided for collections to optionally expose the input and
output parameters of the modules they contain. For exam-
ple, the collection ’mySinus’ might contain a Sinus mod-
ule, which has the attributes Frequency and Phase, but the
collection might only expose the Frequency attribute to
the containing collection, whilst setting the Phase to some
arbitrary constant value.

2.3. Module ports

Modules and collections are connected up to each other
using Integra ports. Each port corresponds to an audio
or messaging address, which has both a symbolic name
and a numeric identifier (port ID). Port symbolic names
correspond to a module’s attribute names (e.g. ’freq’),
and port numbers are derived implicitly from the index
of the port in the module’s attribute list. In addition to its

port number, each module has a globally unique symbolic
name (e.g. ’sinus1’), and an implicitly determined, glob-
ally unique numeric identifier (UID). The Integra library
can be used to address any module port using either their
fully-qualified symbolic name (e.g. ’/sinus1/oscillator/freq’),
or using a combination of their UID and port ID. It is an
important part of the Integra module construction protocol
that port ordering is always consistent. Otherwise a mod-
ule implementation’s port numbering will not correspond
to the numbering expected by the Integra library.

From the perspective of the Integra library, database,
and XML schema, there is no distinction between audio
and control rate ports. This distinction is only made in the
implementation. There is also no conceptual distinction
between input ports and output ports, a port is just an ad-
dress that can receive data and connect to other addresses.
This is illustrated in figure 1 where the first ’route’ object
corresponds to ports one to four, which in turn correspond
to oscillator frequency, oscillator phase, the module ’ac-
tive’ setting, and the audio output. In this example, ports
one to three will set the attributes of the sine oscillator
when sent a numeric value, and report their current value
to any connected ports when sent an empty message.

2.4. Connections

For each module or collection, the Integra library stores a
list of ports that each output port of a given module is con-
nected to. One-to-many, many-to-one or many-to-many
connections can easily be established. However, it is im-
portant to note that providing this functionality makes it a
requirement for the software hosting the modules to sup-
port these routings.

3. IXD (INTEGRA EXTENSIBLE DATA)

In order to store modules, module collections, and per-
formance data in a software-neutral manner, a bespoke
Integra file format was developed. XML was chosen as
the basis for this since it is relatively human-readable, can
be transformed for a variety of output targets, and has a
number of excellent tools for parsing, reading and writing.
The library currently uses the libxml2 7 library to provide
much of its XML processing functionality.

Rather than keeping all data needed to store an Inte-
gra collection in a single file we make use of the XML
Linking language (XLink 8) to link in relevant resources.
This makes for more efficient parsing and helps to keep
file sizes small.

3.1. Integra module definition

Perhaps the most important part of the IXD specification is
the module definition file. It is the XML representation of
an Integra module (see 2.1.1). These files are created and
updated through the database interface and stored locally

7 http://xmlsoft.org/
8 http://www.w3.org/TR/xlink/

Command Purpose

/load <module-name> Instantiate a module in a given target

/remove <module id> Remove a module instance

/connect<module id> <port number>
<module id> <port number>

Connect two ports

/disconnect <module id> <port number>
<module id> <port number>

Disconnect two ports

/send <module id> <port number> <value> Send a value to a port

/direct <module id> <state> Toggle direct message passing for a module instance

Table 3. Instance host OSC scheme

for offline access in a gzipped archive. Each file contains
the class and module definitions of one unique module and
a link to the parent class from which it inherits properties:

<Class>
<ClassDefinition>
<className>Sinus</className>
<classParent ...

xlink:href="Oscillator.xml">
Oscillator

</classParent>
...

</ClassDefinition>
<ModuleDefinition>

...
</ModuleDefinition>
</Class

All documents that are part of the Integra documen-
tation system must have a class definition - it represents
the super class of the Integra class hierarchy and it defines
those attributes shared by all kinds of data - performance
data, biographical data, etc. (see section 2.1.1). The mod-
ule definition is specific to the notion of modules as de-
fined in section 2.

A part of the body of the module definition IXD file
containing the definition shown in Table 1, would con-
tain the following construct (please note that only the freq-
attribute is included):

<attributeUnitCodes>
<index id="0">
<name>Hz</name>
<description>

The value in Hz (0 - INF).
</description>

</index>
</attributeUnitCodes>
<attributeMinima>
<index id="0">

<value>0</value>
</index>

</attributeMinima>
<attributeMaxima>
<index id="0">
<value>INF</value>

</index>
</attributeMaxima>
<attributeDefaults>

<index id="0">
<value>440</value>

</index>
</attributeDefaults>
...

Each module and each of its attributes may also hold
a documentation reference. This allows the implementing
host for this module to make a call to the instance host
to bring up on-line documentation, for this attribute or for
the module itself. The link points to a file included in the
local archive of module descriptions.

<classAttributesDocumentationIDs>
<index id="0"

...
xlink:href="FrequencyDoc.xml">

</index>
</classAttributesDocumentationIDs>

3.2. Integra collection definition

Once a module is defined and stored in an IXD file it may
be instantiated. Instances of classes of modules along with
their inter-connections are stored in a collection file which
is the Integra equivalent of a PD or Max/MSP ’patch’.

In a collection file each module instance is represented
by a locator that points to the definition of the class to
which the instance belongs. Connections between ports
are represented by arcs between resources (pointing to
definitions of individual addresses) in the module defini-
tion file pointed to by the locator. Finally, it also holds
references to performance data files.

3.3. Integra performance and preset data

The performance and preset data files store information
about the current and previous N states of the instance
stored at a specified time resolution, stored presets, and
sequences of dynamic data. As was mentioned in section
2.1.4, this information is only available to instances, or a
group of instances, which holds a reference to a special

kind of data module, i.e. this file represents an instance of
this data module which in turn is associated with a specific
module instance or group of module instances.

3.4. Serialization layer

To facilitate the conversion between flat XML files con-
forming to the IXD specification, and a memory-resident
representation of the data, a serialization library compo-
nent has been developed (see 5.1). The serialization layer
is the link between the database and the local file system
(see figure 2).

The serialization component provides functions for load-
ing, saving and modifying XML, and is used by the in-
stance host (see 5.2), the database (see 4) and/or any other
application interfacing with the library. For example, on
the database server, the serialization layer is made avail-
able to the python-based web interface via a SWIG-generated
interface.

The IXD format is specified and documented in several
XML Schemas 9 . The XML Schema for the module def-
inition files is closely correlated to the database schema
and they share the same versioning system. Any file con-
forming to the file format can be validated against a spe-
cific schema version and conditional actions may be per-
formed on them as appropriate.

Finally, we are also working on an Integra specific XSL
Transformation 10 specification for automatic generation
of XHTML and/or PDF documentation of a given module
or collection of modules. In practice this means that once
the user has created his or her own Integra collection for a
piece or a project, and uploaded it to the database a docu-
mentation file for this collection is automatically created.

4. DATABASE

For persistent storage of module data and other data re-
lating to musical works we have designed and configured
an on-line database. The database comprises a postgresql
back-end, and a web-based UI written in Python. Postgres
was chosen because of its reliability, maturity and close-
coupling with the data-structures to be stored. Because
postgres is an object-relational database management sys-
tem (ORDMS), we were able to utilise the facility to cre-
ate inheritance relations between tables, mirroring inher-
itance between module classes. We also make extensive
use of postgres’ array type.

In the Integra database, the module definitions are stored
in one table, with references to data in a number of sup-
plementary look-up tables. For example, the module def-
inition shown in Table 1 would be stored in a single row
in the Module Definitions table. Data in fields such as
’Attribute Unit Codes’ are stored as integers that are used
as indices to a look-up table. This is done to ensure data
consistency, efficiency of storage and fast look-up.

9 http://www.w3.org/XML/Schema
10 http://www.w3.org/TR/xslt

Field Value

1 Hertz
2 Radians

Table 4. Typical look-up table

The ’Attribute Units’ look-up table might look as shown
in table 4.

4.1. Database UI

The only way in which users may add new, or edit ex-
isting module definitions is via a web-based interface. It
also provides mechanisms for uploading and downloading
module definitions, and collections. Once a module defi-
nition has been added to the definitions table, the database
schema is extended through the addition of a correspond-
ing table to hold the new module’s instance data. When a
module definition is added to the database, the module’s
parent is specified, and only attributes that differ from
those provided by its parent are added. An inheritance re-
lation is then created between the new module’s instance
table, and the parent module’s instance table. This means
that all of the parent module’s attributes then become avail-
able to instances of the child module.

5. (INTEGRA)TION VIA THE LIBRARY

libIntegra is a cross-platform shared library, mostly writ-
ten in ISO C89 compliant C, and packaged using the GNU
autotools tool chain. It consists of a common API, and a
number of optional components.

5.1. Serialization component

As mentioned in 3.4 the database also makes use of the
serialization component. When the user requests a par-
ticular module collection, the database is queried for the
relevant data, and the serialization library component is
used to generate a number of XML files. These files are
in turn bundled into a gzipped archive and stored locally.
The program linked to the Integra library can then use the
same XML handling functions to de-serialize the data, and
form an in-memory representation of it.

5.2. Instance host

As well as a serialization component the library provides
an instance host, which is responsible for keeping a record
of each module’s run-time state. This includes the val-
ues that any of its ports have, and any connections that
are made between modules. The instance host acts as an
OSC server (using the liblo library 11), and operations can
be performed on modules by sending OSC messages to

11 http://liblo.sourceforge.net/

it. The instance host supports a simple efficient syntax as
shown in table 3.

Module instances can either communicate with each
other through the instance host using OSC, or directly us-
ing an environment-specific messaging system. The method
to be used is determined by the value of the module’s ’di-
rect’ flag. If messages pass through the Instance host, it
means that various operations can be performed on the
data as it passes through. This includes:

• Type checking

• Range checking

• Unit conversion

• Type conversion

All of these can be validated against the module defini-
tion held in memory.

5.3. Library/target bridge

In order to instantiate modules in a target environment,
and send data to these modules in an efficient way, the In-
tegra instance host needs a way to communicate directly
with the environment. This is done using a target-specific
bridge, which is a dynamically loaded binary shared ob-
ject hosted ’inside’ the instance host. The library provides
a very simple API, that each target-specific bridge must
conform to. The instance host has no knowledge of the
software being used to host the module instances so the
bridge acts like a translator receiving function calls, and
performing the relevant target-specific actions. These ac-
tions include instantiating modules, removing them and
connecting them. Most OSC commands supported by the
Instance host have a corresponding function in the bridge.

It is the plug’s software-specific communication mech-
anism that determines the protocol used to construct mod-
ule implementations. It is possible, although not neces-
sarily desirable to have several bridgess for a given target,
each of which elicits a different approach to module con-
struction. This might be useful for compatibility with ex-
isting modularisation efforts, such as the Jamoma project,
or PD Faust modules.

5.4. Module host

The module host is not part of libIntegra, it is any soft-
ware that hosts Integra modules. Typically, a module host
will be dynamically linked to libIntegra at compile time.
At run time the module host can make direct calls to func-
tions in the instance host and also make use of the Instance
host OSC interface. Typically the OSC interface is used
for communication from the individual modules. Com-
munication from the Instance host to the module host and
modules is always achieved through the bridge.

It is also possible for the module host to be a standalone
application that doesn’t link to libIntegra. In this case the
bridge will usually use a network-based protocol such as
OSC to communicate with the module host. A Unix pipe
or socket is another possibility for this type of setup.

5.5. Inter-library communication

An arbitrary number of libIntegra instances may be run-
ning on the same computer or on any number of networked
computers. Each libIntegra instance can be running in a
new instance of a common module host, or a completely
different module host. A typical configuration is shown in
Figure 2.

When multiple libIntegra instances are used, only one
(the master), can make use of the serialization layer to
load and save Integra module instance data and collec-
tions. This is to prevent several versions of the same col-
lection being opened by different library instances, and
becoming unsynchronised. If the user or developer knows
that the serialization layer will not be required, the library
can be compiled without it.

The Instance host contains mechanisms for inter-library
communication and auto-discovery. This is mostly achieved
through OSC messaging, and facilitates the loading of In-
tegra collections across several module hosts, with trans-
parent state saving.

5.6. libIntegra package

In addition to providing the instance host and serializa-
tion components, which constitute the bulk of the libInte-
gra binary shared object, the libIntegra package also pro-
vides a number of other useful tools. These include a CLI
(command line interface) through which all operations can
be performed in a non-GUI mode, a number of example
bridge implementations, and a number of example module
host implementations.

6. USE CASE SCENARIO

We will now describe a typical use case for the Integra
library involving the on-line database, and a DSP envi-
ronment running locally. The data flow is summarized in
figure 2. We will assume that the database is empty.

Firstly, ’user A’ (A hereafter) will create a couple of
module implementations following the Integra module cre-
ation protocol. Once this is done, A will enter the mod-
ules’ definitions into the database using the on-line web
interface, and upload the implementations using an on-
line form.

’User B’ (B hereafter) will then launch the required
GUI and DSP engine (these may be provided by the same
program), both of which provide linkage to libIntegra. The
GUI will call the serialization component for an up-to-
date version of the available modules and their definitions
which in turn acquires an archive of the definitions and the
module implementation files.

Now that the GUI is aware of the available module def-
initions, modules can be instantiated and inter-connected
in the Engine. If these are graphical modules, they will
be instantiated in the GUI. In this example, B creates a
slider in the GUI, and a sinus oscillator in the engine, and
connects the port corresponding to the ’position’ attribute

Figure 2. A model of the parts constituting libIntegra and how the library interfaces with other parts of the system.

of the slider to the port corresponding to the ’frequency’
attribute of the sinus oscillator.

The user can modify the state of these modules by mov-
ing the slider. Once B is satisfied with the connected mod-
ules, the connection graph, and the current module state,
it can be saved back to the Integra archive as XML, again
by calling functions in the Integra library via the GUI. If
the user has an Internet connection, then the new mod-
ule collection can be written directly to the database using
XML-RPC.

Any new user can now download the newly created
module collection, load and modify it, and then commit
their changes back to the database. The database employs
a versioning system, so that at any point a collection can
be reverted to a previous save-state.

7. PROJECT STATUS

The Integra library is currently hosted on sourceforge.net.
We have a small but active developer community, which is
growing slowly as the project progresses. It is important
to note that the Integra library is only one element of the
Integra environment. The Integra environment is the core
goal of the development strand of the Integra project, and
seeks to provide a complete solution for composers and
performers working in music with Interactive live elec-
tronics. The library provides the foundation for this en-
vironment, but we are also developing a bespoke GUI for
composers and performers to work with.

The library and the GUI are both currently in pre-alpha
development.

7.1. Future work

One of current priorities is to populate the Integra database
with a large number of module definitions and implemen-
tations. However, we would like to keep the amount of
implementation-specific data we store to an absolute min-
imum. The first step in this has been to separate out the
module definition, namespace (derived from the defini-
tion), instance data, and implementation. We would now
like to explore ways of storing the data encoded by the
implementation in an software-neutral manner. One way
to do this might be to create a set of implementation prim-
itives, and then create more complex modules from these
using Integra collections as an encapsulation mechanism.
Another possibility would be to create a simple Integra
scripting language that could be used in addition to mod-
ule encapsulation, or alongside a DSP description language
such as Faust.

8. CONCLUSION

We have outlined a robust, cross-platform, software-independent
means of storing and loading module data. In addition
we have discussed the facilities that the Integra library
provides for loading, saving, instantiating and managing
modules and collections of modules. The next stage in our

work will entail a phase of alpha and beta testing, both in-
ternally and with our end users. The aim of the Integra
project is to improve the usability of software for work-
ing with live electronics, and to provide a mechanism for
the sustainability of the musical works it is used to create.
libIntegra should ultimately provide a foundation for this.

9. REFERENCES

[1] Orlarey, Y. and Fober, D. and Letz, S. ”Syntac-
tical and semantical aspects of FaustSoft Com-
puting” Soft Computing - A Fusion of Founda-

tions, Methodologies and Applications, vol. 8,
no. 9, 2004

[2] Orlarey, Y. and Fober, D. and Letz, S. ”An
Algebra for Block Diagram Languages” Pro-

ceedings of the International Computer Music

Conference, ICMA, USA, 2002.

[3] Place, T. and Lossius, T. ”Jamoma: A Modular
Standard for Structuring Patches in Max” Pro-

ceedings of the International Computer Music

Conference, ICMA, USA, 2006.

[4] Puckette, M. ”New Public-Domain Realiza-
tions of Standard Pieces for Instruments and
Live Electronics” Proceedings of the Interna-

tional Computer Music Conference, ICMA,
USA, 2006.

[5] Bachimont, B. and Blanchette, J.-F. and
Gerzso, A. and Swetland, A. and Lescurieux,
O. and Morizet-Mahoudeaux, P. and Donin, N.
and Teasley, J. ”Preserving interactive digital
music: a report on the MUSTICA research ini-
tiative” Web Delivering of Music, 2003. 2003
WEDELMUSIC. Proceedings. Third Interna-
tional Conference on Web Delivering of Mu-
sic.

View publication statsView publication stats

https://www.researchgate.net/publication/253964310

