
AN OBJECT ORIENTED MODEL FOR THE REPRESENTATION OF
TEMPORAL DATA IN THE INTEGRA FRAMEWORK

Jamie Bullock

Birmingham Conservatoire
Birmingham City University

james.bullock@bcu.ac.uk

Henrik Frisk, Ph.D.

Malmö Academy of Music
Lund University

henrik.frisk@mhm.lu.se

ABSTRACT

In this paper we describe a model for the representation and
storage of time-related data in the context of the Integra
framework. We highlight the need for a portable, sustain-
able data format that can be shared between common en-
vironments for audio and multimedia processing. Since the
storage of spectral and gestural data has been covered by the
SDIF and GDIF formats, we focus on the storage of multi-
media processing module state, and changes in state over
time. After a review of existing research in this area we pro-
pose an object-oriented approach to both the storage format
and the runtime-handling of module state in keeping with
the Integra design paradigms. We also show how an XML-
based format can lead to a semantically-rich, flexible and
robust approach to storage of module state and interpolated
or non-interpolated state sequences.

1. INTRODUCTION

The primary motivation for this research is to attempt at
complementing the concept of the Integra module [4, 3];
a self contained and largely synchronous sound processing
module, with the ability to store and edit time based, asyn-
chronous data. The address space design and storage format
specification of Integra modules makes way for a general-
ized and interchangeable time format in which sequences of
events are dispatched to module instances. As a result of the
generic and abstract nature of the Intgera framework and the
abstraction layer it contains, any time-related data stored ac-
cording to the model proposed below can be shared by any
module instance that has a compatible interface.

1.1. Related Work

The dominant mechanism for the representation and stor-
age of time-based control data in a musical context is the
MIDI protocol and its related formats. The file format we
propose draws upon the strengths of MIDI whilst providing
an alternative that is more suited to the complex demands of
interactive and generative music. The facilities offered by
the format are discussed in sections 2 to 3. We will first

proceed with a review of existing developments in the field
that are related to our current work.

1.1.1. SDIF

SDIF is an extensible standard for the storage and inter-
change of ‘sound description’ information including, but not
limited to spectral data and ‘higher-level’ audio features[8,
6]. SDIF is a portable binary file format that is currently
supported in a number of widely-used programming envi-
ronments including Max/MSP, OpenMusic and CLAM. The
GDIF format extends SDIF by adding the capability to store
gesture-related data including controller data, sensor data
and meta-data about the gesture capturing session [7]. One
of the limitations of SDIF as a general purpose format for
time-related data is that it trades semantic richness for effi-
ciency of representation. This is a sensible design choice
given that the original purpose of SDIF was to standard-
ise the storage of spectral data frames. We have decided
in Integra to use SDIF and GDIF where appropriate, supple-
menting these standards with our own XML-based format,
described in section 3.

1.1.2. MetriXML

MetriXML is a format developed by Xavier Amatriain for
the original CLAM software, and can be thought of as a
Music-N style Generator/Score language implemented in
XML[1]. A MetriXML score is an XML file containing a
header tag, which is used store meta data about the score,
and a body tag, which contains a series of event tags repre-
senting time stamped messages destined for Instruments de-
clared in the header. An example MetriXML event is shown
below.

<Event>
<Time type="temporal">

<Seconds>01</Seconds>
</Time>
<Receiver>clarinet</Receiver>
<Message>

<Parameter>Gain</Parameter>
<Value>0,1 1,0.5</Value>

mailto:james.bullock@bcu.ac.uk
mailto:henrik.frisk@mhm.lu.se


</Message>
</Event>

The Integra IXD sequence format is similar to MetriXML
in both syntax and semantics, particularly in its notion of
‘events’. MetriXML also incorporates the SDIF format by
reference using the < SDIFDe f initionFile > tag.

1.1.3. SMIL

The Synchronized Multimedia Integration Language, or SMIL
[5], is a general purpose multi media format. Supported
by W3C it is an XML-based language with which authors
may write interactive multimedia presentations among other
things. It had some support in InternetExplorer 5.5 and 6,
Apple’s QuickTime player, RealAudio and Helix players,
as well as the reference Ambulant player. SMIL has so-
phisticated methods for synchronizing multiple multi me-
dia streams and it was an inspiration in the early stages of
the development of the Integra time format. For example,
the seq and par element in SMIL loosely correspond to the
sequence and preset element in the IXD format. With the
modularization of SMIL 3.0 it is feasible to imagine incor-
porating SMIL elements in IXD files.

An important difference between SMIL and the proposed
format is that SMIL is a language that may be used to con-
struct content whereas the primary purpose of the Integra
format is to store time based information created elsewhere.

2. THE PLAYER MODULE

The Integra framework seeks to address the issue of inter-
change between environments by defining a set of proto-
cols and file formats for portable development, along with
a shared library, which implements these protocols and pro-
vides transparent IXD file parsing (see section 3). Integra
modules consist of three components: an interface defini-
tion; an implementation and instance data representing the
module’s state at ‘save time’. The Player module is a spe-
cial module in the sense that it is responsible for instigat-
ing synchronous state changes in other modules. Time and
timing in the Integra framework are almost always handled
asynchronously. The Player module is different, in that it is
expected to implement an internal clock, which can be used
to schedule future events. These events can be sequenced
in time as Sequences, or bundled up into Presets, which en-
able multiple attributes of a given module to be changed si-
multaneously. The Player interface supports the following
features:

• looped and reverse-looped playback of sequenced data

• random access to sequence data

• non-linear sequences:

– sequences that contain other sequences

– sequences that control the playback of other se-
quences

• relative representation of time (non-absolute)

• non-track based: each time location can have an arbi-
trary number of ‘events’ with an arbitrary number of
‘targets’

2.1. The Event Interface

‘events’ can be thought of as class instances that conform
to the Event interface. Event inherits from the Integra base
class, adding the attributes for the event address, value and
interpolation setting.

‘events’ are useful for containing data for a single at-
tribute, or small sets of uncorrelated attributes, e.g. recorded
sensor data, BPF data, note data. However, often we will
want to store a snapshot of all of the attributes of a module
at a given point in time. For this we have the Preset class.
Preset inherits from the Event class, and can be thought of
as a special type of event: an event that contains other events
in a set where each event is guaranteed to have a different
address. Presets have certain implicit rules associated with
them:

• They contain no time information (all events in a pre-
set can be said to coexist simultaneously)

• All event address strings must be unique within a given
preset.

Since the Preset class definition conforms to the Event
interface, Preset and Event instances can be used interchange-
ably in contexts such as sequences.

3. STORAGE: THE IXD FILE FORMAT

The IXD file format is an XML-based format that is already
used within the Integra framework for storing Module defi-
nitions and Collections of modules[3]. The time-based data
format described in this paper will form an extension to the
existing IXD formats and the various Schemas can be re-
used extensively.

3.1. Sequences

For maximum flexibility and re-usability both sequences and
presets are stored as separate entities and linked to in the
collection using standard XLink syntax [2]. Should the in-
cluded file contain multiple sequences or presets an addi-
tional selector argument may be supplied. In the example
below, the sequence with id 2 from the file mysequence.ixd
will be embedded.



<state>
<value title="mysequence"

xlinktype="simple"
href="mysequence.ixd"
show="embed"
selector="2" />

</state>

Sequence files contain list of events according to the fol-
lowing trivial example which sets delay.time to 400 at tick 0,
starts another Player, and changes delay.time to 800 at tick
100:

<sequence id=0>
<event tick="0" id="1"

marker="Foo Bar">
<address class="delay"

attribute="time"/>
<value>400</value>

</event>
<!-- we deleted event id="2"

at some point -->
<event tick="0" id="3"

marker="">
<!-- this goes to ’another’

player -->
<address class="player"

attribute="play"/>
<value>1</value>

</event>
<event tick="100" id="4"

marker="Baz Bam">
<address class="delay"

attribute="time"/>
<value>800</value>

</event>
</sequence>

It is important to note that the implication of sending
the value ‘1’ to another Player is that events can trigger se-
quences, which can in turn contain further events. This pro-
vides an implicit arbitrary nesting of sequences and events
through the mechanism of Player instances ‘playing’ other
Player instances.

3.2. Preset

If an event is of type ‘preset’ it contains a link (again us-
ing standard XLink syntax [2]) to a preset file which may
contain one or many presets. Selection of individual presets
may be achieved using the same selector attribute used in
the sequence link.

<event tick="100"
type="preset"
href="mypreset.ixd"
id="5"
marker="Load delay preset 1"
selector="2">

A stored preset defines events with address/value pairs.
These events have no time information associated with them
but are merely ‘snapshots’ and there must be no duplicate
addresses in any given preset. Below is a simple example:

<preset class="delay" name="delay preset 1">
<event>
<address attribute="frequency"/>
<value>800</value>

</event>
<event>
<address attribute="phase"/>
<value>0.5</value>

</event>
</preset>

3.3. Tagging and Meta-Data

Because our temporal model uses the XML-based Integra
IXD format for data storage it inherits the ontological pos-
sibilities provided by our existing schema. This means that
sequences and presets can be given ‘tags’ containing seman-
tic information, and that ‘relations’ can be created between
different sequences, or for example presets and module in-
stances. We also provide the possibility to embed sequence
descriptions, and links to documentation about a given se-
quence or preset. This could have applications in the musi-
cology of live electronic music for example where multiple
versions of performances could be encoded and given addi-
tional semantic markup to inform future study.

3.4. Evaluation

Whilst the IXD format alluded to in this paper has a formally
defined schema, and is currently used for a range of ex-
ample module definitions provided with the Integra frame-
work, the temporal model and storage constructs have not
yet been implemented and tested in practice. We therefore
defer evaluation of the proposed model to future research.
However, it is worth noting at this point the similarity of as-
pects of IXD with the RDF and OWL specifications. RDF is
a W3C recommendation that defines a language for describ-
ing resources using subject-predicate-object expressions[9].
Whilst RDF is primarily useful for encoding objects and ob-
ject properties, OWL places a greater emphasis on relation-
ships between objects to create descriptive ontologies. This
capability is provided by Integra IXD through the ‘relation’
construct and although OWL is currently more exhaustive
in the types of relationship it can define, there is no rea-
son why the Integra Relation class could not be extended in
future versions of the schema. In general we decided to de-
velop our own XML-based format rather than use RDF or
OWL because on the one hand with specific requirements
that can’t be met by these standards and on the other, In-
tegra IXD provides enough semantic richness and potential



for ontological description along with extensibility to make
OWL unnecessary.

4. CONCLUSION

In this paper, we have outlined a proposal for an extension
to the Integra framework that allows the representation and
storage of temporal data. We have acknowledged the signif-
icance of existing formats, such as SDIF and GDIF for the
storage of high-rate data such as spectral analysis frames
and gesture capture data. However, we have highlighted a
need for an environment neutral format for the storage of
multimedia processing module state, and state change over
time, even though such format may well reference SDIF,
GDIF and even SMIL formats. Hence we have proposed an
XML-based extension to the existing Integra file formats,
which addresses some of these problems, and opens new
possibilities for file-based transformation of temporal data
for multimedia processing modules. Finally, we argue that
using an XML-based format provides a level of semantic
richness not possible with binary, and simpler text-based
formats.

5. REFERENCES

[1] X. Amatriain, “An object-oriented metamodel for digi-
tal signal processing with a focus on audio and music,”
Ph.D. dissertation, Departament de Tecnologica, Uni-
versitat Pompeu Fabra, Barcelona, Spain, 2004.

[2] Arbouzov, L et al., “Xml linking language (xlink)
version 1.1,” Web resource. [Online]. Available:
http://www.w3.org/TR/2006/CR-xlink11-20060328/

[3] J. Bullock, H. Frisk, and L. Coccioli, “Sustainability of
‘live electronic’ music in the integra project,” in The
14th IEEE Mediterranean Electrotechnical Conference
Proceedings. Ajaccio, Corsica: IEEE, 2008, iEEE Cat-
alog Number: CFP08MEL-CDR.

[4] J. Bullock and H. Frisk, “libIntegra: A System for
Software-Independent Multimedia Module Description
and Storage,” in Proceedings of the International Com-
puter Music Conference 2007. Copenhagen, Denmark:
ICMA, 2007.

[5] D. e. a. Bulterman, “Synchronized multimedia
integration language (smil 3.0),” Web resource.
[Online]. Available: http://www.w3.org/TR/2008/
REC-SMIL3-20081201/

[6] M. W. A. Chaudhary, “Audio applications of the sound
description interchange format standard,” in In Proceed-
ings of the International Computer Music Conference,
Ann Arbor, Michigan, 1999, pp. 276–279.

[7] A. R. Jensenius, T. Kvifte, and R. I. Godøy, “Towards
a gesture description interchange format,” in NIME ’06:
Proceedings of the 2006 conference on New interfaces
for musical expression. Paris, France, France: IRCAM
— Centre Pompidou, 2006, pp. 176–179.

[8] D. Schwarz, I. Centre, G. Pompidou, and M. Wright,
“Extensions and applications of the sdif sound descrip-
tion interchange format,” in In Proceedings of the Inter-
national Computer Music Conference, 2000, pp. 481–
484.

[9] S. Staab and R. Studer, Eds., Handbook on Ontologies,
ser. International Handbooks on Information Systems.
Springer, 2004.

http://www.w3.org/TR/2006/CR-xlink11-20060328/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/

	1  Introduction
	1.1  Related Work
	1.1.1  SDIF
	1.1.2  MetriXML
	1.1.3  SMIL


	2  The Player module
	2.1  The Event Interface

	3  Storage: The IXD file format
	3.1  Sequences
	3.2  Preset
	3.3  Tagging and Meta-Data
	3.4  Evaluation

	4  Conclusion
	5  References

