Sustainability of ‘live electronic’ music in the
Integra project

Jamie Bullock
Music Technology Department
Birmingham Conservatoire
Birmingham City University
Birmingham, B3 3HG
UK
Email: james.bullock@bcu.ac.uk

Abstract—In this paper we describe a new XML file format
and a database schema designed for the storage of performance
data and meta-data relating to live electronic music. We briefly
describe the architecture of the Integra environment, and give
examples of the hierarchical modelling of Integra classes. The
separation of module definition, module instance data and module
implementation data is presented as one of the key components
of the Integra system. The libIntegra library is proposed as a
means for supporting the file formats in target applications.

I. INTRODUCTION

Integra, “A European Composition and Performance Envi-
ronment for Sharing Live Music Technologies”, is a 3-year
project led by Birmingham Conservatoire in the UK' and
supported by the Culture 2000 programme of the European
Commission. One aspect of Integra is to develop a new soft-
ware environment to facilitate composing and performing in
the context of interactive and live electronic music. In general,
the project attempts to address the problems of persistent stor-
age, portability and standardised intercommunication between
different software (and hardware) systems for electronic music.
It is a priority that all data relating to supported musical works,
including scores, electronic parts, information about different
versions and renderings of these works, biographical data,
etc., should be stored on a web-accessible database, and that
this data should be transferable to a variety of usable target
applications.

Integra started as a way of standardising the construction of
modules, and providing a generalised OSC namespace within
the Max/MSP environment. As such it has some similarities
with the Jamoma[3]?> and Jade projects®. However, it now
differs substantially from either of these in that it has a
strong emphasis on software independence, and persistent
storage. Two other projects that aim to tackle problems that
are similar to those which Integra attempts to address are
Faust [1][2]* and NASPRO?. Furthermore, Integra’s repertoire

Ihttp://www.integralive .org
Zhttp://www.jamoma.org/
3http://www.electrotap.com/jade
“http://faust.grame fr
Shttp://sourceforge .net/projects/naspro/

Henrik Frisk
Performance, Composition and
Church Music Department
Malmo Academy of Music
Lund University
S-20041 Malmo
Email: henrik frisk@mhm.lu.se

Lamberto Coccioli
Music Technology Department
Birmingham Conservatoire
Birmingham City University
Birmingham, B3 3HG
UK
Email: lamberto.coccioli@bcu.ac.uk

migration programme [7] is closely related to documentation
and technology migration initiatives such as the PD Repertory
Project[4], Mustica[5], and the CASPAR Projectﬁ, though the
scope of the latter is much wider than that of Integra.

II. INTEGRA MODULES

The basis of the Integra library is the concept of the
Integra module. Integra modules encapsulate a specific piece
of message or signal processing functionality. A module could
perform a simple task like generating a sine wave, or a
complex task like emulating a specific synthesiser. In this
section, we will outline how Integra modules and module
collections are constructed.

A. Module construction

The minimum requirement for an Integra module is that it
must have an interface definition. In addition, it may also have
an implementation and module instance data. Of these, only
the implementation is software specific.

1) Module definition: An Integra module definition is data
that defines what attributes a module has, and what the
characteristics of those attributes are. An Integra attribute is
a symbolic name with which a value can be associated. The
module definition doesn’t store the actual values of attributes,
instead it stores data about the attributes such as their names,
descriptions, supported data types, maxima and minima, and
default values. Typical module definition data is shown in
Table I.

The parent field is used to show an inheritance relation.
All Integra module definitions could be thought of as class
definitions, the members of which are all abstract (lack
implementation), or interface definitions. The interface of
a given class can inherit the interface of any other class,
and supplement this with additional members. This definition
hierarchy is the basis of the Integra database (see section V).

Shttp://www.casparpreserves.eu/

Field Value
Name Oscillator
Parent Module
Attributes freq, phase
Attribute Unit Codes 1,2
Attribute Minima 0,0
Attribute Maxima inf, 6.2831853071795862
Attribute Defaults 440, 0
TABLE I

INTEGRA OSCILLATOR INTERFACE DEFINITION

OSC address Purpose

/oscillator/freq <value> Set the value
of the ‘freq’
attribute

Set the value of
the ‘phase’ at-
tribute
Set whether or
not the module is
active

/oscillator/phase <value>

/module/active <value>

TABLE 11
INTEGRA SINUS MODULE NAMESPACE

2) Module namespace: A module’s namespace is derived
from its definition. The namespace enables the values of
attributes to be set, and module methods to be called by using
a symbolic naming scheme. From the user’s perspective, this
will usually manifest itself as an OSC address space. The
OSC address space for a sinus module is shown in table II.
The sinus class inherits the oscillator class interface, which in
turn inherits the module class interface, so all of these must
be reflected in the module’s namespace, and in turn must be
represented in the implementation.

3) Module implementation: The module implementation is
the only software-specific data stored by Integra. It consists
of a fragment of computer code, in one or more files, which
when run or loaded by a particular piece of software will
perform a specific audio or message processing task. In order
that module implementations can be used by libIntegra, an
implementation protocol must be devised for each software
target. Integra currently provides implementation protocols for
Max/MSP and Pure Data (Pd) along with a growing selection
of example module implementations and implementation tem-
plates. In practice, the implementation files are Max and PD
‘abstractions’ that provide a number of compulsory methods,
and conform to the implementation protocol. A typical module

implementation is shown in Figure 1.
A SuperCollider class to perform the same task, might look
as follows:

Sinus Oscillator {
init{
var freq, outPorts,
freq = 440;
outPorts = [1];
actions = actions.add(
{|val| this.server.sendMsg(

server;

pd receive —--—————— J
[pd sine W

/

au-port—-out 3 —————l

An Integra sine wave oscillator implemented in PD

Fig. 1.

‘‘/n_set’'’, nodeid, \freq, val)});
nodeid = Synth(\Sinus,
[\freq, freq, \outport0, outPorts[0]]
) .nodeID;
super.init;

}

This implementation is very different from the PD sinus,
not only because it is implemented in a different module host
(i.e. SuperCollider), but also because it employs inheritance
to provide much of its functionality. In SuperCollider we
can use inheritance at the level of implementation to mirror
the interface inheritance used in the Integra database, and
conceptually between abstract Integra classes. The PD sinus
must implement all of the interfaces inherited by the sinus
class and its parents, right to the top of the class tree. The
SuperCollider sinus only needs to implement the interface
that is unique to it, implementations of inherited interfaces
are inherited from the parent class: Oscillator.

In the short term, the Integra project seeks to provide pro-
tocol specifications for constructing module implementations
in a range of different software environments. A longer term
goal is to explore ways in which the process of constructing
module implementations may be automated.

4) Module instance data: Module instance data consists of
the run-time state of all of its variable parameters. This data is
stored in memory by the Integra library whilst a module is in
use, and can be written to an XML file on demand. In addition,
for persistent storage, the same data can be stored in the
Integra database in the module’s instance table. Currently only
one saved state can be associated with each module instance.

B. Module collections

An Integra collection consists of one or more Integra mod-
ule instances. A collection can also contain other collections.
These contained collections encapsulate the functionality of a
number of connected Integra modules into a single entity and
can be addressed and connected as if they were normal module
instances. The facility is provided for collections to optionally
expose the input and output parameters of the modules they
contain. For example, the collection ‘mySinus’ might contain

a Sinus module, which has the attributes Frequency and Phase,
but the collection might only expose the Frequency attribute
to the containing collection, whilst setting the Phase to some
arbitrary constant value.

C. Module ports

Modules and collections are connected up to each other
using Integra ports. Each port corresponds to an audio or
messaging address, which has both a symbolic name and a
numeric identifier (port ID). Port symbolic names correspond
to a module’s attribute names (e.g. ‘freq’), and port numbers
are derived implicitly from the index of the port in the mod-
ule’s attribute list. In addition to its port number, each module
has a globally unique symbolic name (e.g. ‘sinusl’), and
an implicitly determined, globally unique numeric identifier
(UID). The Integra library can be used to address any module
port using either their fully-qualified symbolic name (e.g.
‘/sinus1/oscillator/freq’), or using a combination of their UID
and port ID. It is an important part of the Integra module
construction protocol that port ordering is always consistent.
Otherwise a module implementation’s port numbering will not
correspond to the numbering expected by the Integra library.

From the perspective of the Integra library, database, and
XML schema, there is no distinction between audio and
control rate ports. This distinction is only made in the im-
plementation. There is also no conceptual distinction between
input ports and output ports, a port is just an address that can
receive data and connect to other addresses. This is illustrated
in figure 1 where the ‘pd receive’ object corresponds to ports
one to four, which in turn correspond to oscillator frequency,
oscillator phase, the audio output and the module ‘active’
setting. In this example, ports one, two and four will set the
attributes of the sine oscillator when sent a numeric value, and
report their current value to any connected ports when sent an
empty message.

D. Connections

For each module or collection, the Integra library stores
a list of ports that each output port of a given module is
connected to. One-to-many, many-to-one or many-to-many
connections can easily be established. However, it is important
to note that providing this functionality makes it a requirement
for the software hosting the modules to support these routings.

III. IXD (INTEGRA EXTENSIBLE DATA)

In order to store modules, module collections, and perfor-
mance data in a software-neutral manner, a bespoke Integra file
format was developed. XML was chosen as the basis for this
since it is relatively human-readable, can be transformed for a
variety of output targets, and has a number of excellent tools
for parsing, reading and writing. The library currently uses
the libxml27 library to provide much of its XML processing
functionality.

Rather than keeping all data needed to store an Integra
collection in a single file we make use of the XML Linking

"http://xmlsoft.org/

language (XLink®) to link in relevant resources. This makes
for more efficient parsing and helps to keep file sizes small.

A. Integra module definition

Perhaps the most important part of the IXD specification
is the module definition file. It is the XML representation of
an Integra module (see II-Al). These files are created and
updated through the database interface and stored locally for
offline access in a gzipped archive. Each file contains the class
and module definitions of one unique module and a link to the
parent class from which it inherits properties:

<Class>
<ClassDefinition>
<name>Sinus</name>
<parent ...
xlink:href="0Oscillator.xml">
Oscillator
</parent>

</ClassDefinition>
<ModuleDefinition>

</ModuleDefinition>
</Class

All documents that are part of the Integra documentation
system must have a class definition - it represents the super
class of the Integra class hierarchy and it defines those
attributes shared by all kinds of data - performance data, bio-
graphical data, etc. (see section II-A1). The module definition
is specific to the notion of modules as defined in section II.

A part of the body of the module definition IXD file
containing the definition shown in Table I, would contain the
following construct:

<attribute id="md.0">
<unit>ntgHz</unit>
<description>The value in Hz (0 - INF).
</description>
<minimum>0.0</minimum>
<maximum>INF</maximum>
<default>440</default>

</attribute>

<attribute id="md.1">
<unit>ntgRadians</unit>
<description>The value in Radians

(0 - 2PI).</description>

<minimum>0.0</minimum>
<maximum>6.2831853071795862</maximum>
<default>0</default>

</attribute>

<attribute id="md.1">
<unit>ntgBoolean</unit>
<description>Is the module active?
</description>
<default>true</default>

</attribute>

Each module and each of its attributes may also hold a
documentation reference. This allows the implementing host

Shttp://www.w3.org/TR/xlink/

Command

Purpose

/load <module-name>

Instantiate a module in a given target

/remove <module id>

Remove a module instance

/connect<module id> <port number>
<module id> <port number>

Connect two ports

/disconnect <module id> <port number>
<module id> <port number>

Disconnect two ports

/send <module id> <port number> <value>

Send a value to a port

/direct <module id> <state>

Toggle direct message passing for a module
instance

TABLE III
INSTANCE HOST OSC SCHEME

for this module to make a call to the instance host to bring
up on-line documentation, for this attribute or for the module
itself. The link points to a file included in the local archive of
module descriptions.

<attribute id="cd.0">
<name>freg</name>
<documentation title="Documentation of
the frequency
attribute."
href="FrequencyDoc.xml"
oo />

.

</attribute>

B. Integra collection definition

Once a module is defined and stored in an IXD file it may
be instantiated. Instances of classes of modules along with
their inter-connections are stored in a collection file which is
the Integra equivalent of a PD or Max/MSP ‘patch’.

In a collection file each module instance is represented
by a locator that points to the definition of the class to
which the instance belongs. Connections between ports are
represented by arcs between resources in the module definition
file pointed to by the locator. Finally, it also holds references
to performance data files.

IV. LIBINTEGRA

libIntegra[6] is a cross-platform shared library, mostly writ-
ten in ISO C89 compliant C, and packaged using the GNU
autotools tool chain. It consists of a common API, and a
number of optional components.

libIntegra provides application developers with all of the
functionality required to read, write and validate Integra-
compliant XML. It can also be used for module instantiation
in a target application via an application specific bridge. The
library has a set of SWIG-generated Python bindings, which
enable the same XML serialisation code to be used on a remote
database server and in a local application. For further details
regarding the library’s design see [6].

Field Value

1 Hertz

2 Radians
TABLE IV

TYPICAL LOOK-UP TABLE

V. DATABASE

For persistent storage of module data and other data relating
to musical works we have designed and configured an on-
line database. The database comprises a Postgresql® back-
end, and a web-based Ul written in Python. Postgres was
chosen because of its reliability, maturity and close-coupling
with the data-structures to be stored. Because Postgres is an
object-relational database management system (ORDMS), we
were able to utilise the facility to create inheritance relations
between tables, mirroring inheritance between module classes.
We also make extensive use of Postgres’ array type.

In the Integra database, the module definitions are stored
in one table, with references to data in a number of supple-
mentary look-up tables. For example, the module definition
shown in Table I would be stored in a single row in the Module
Definitions table. Data in fields such as ‘Attribute Unit Codes’
are stored as integers that are used as indices to a look-up table.
This is done to ensure data consistency, efficiency of storage
and fast look-up.

The ‘Attribute Units’ look-up table might look as shown in
table IV.

A. Database Ul

Users may add new, or edit existing module definitions
via a web-based interface. The interface also provides mecha-
nisms for uploading and downloading module definitions, and
collections. Once a module definition has been added to the
definitions table, the database schema is extended through the
addition of a corresponding table to hold the new module’s
instance data. When a module definition is added to the

9Postgres hereafter.

database, the module’s parent is specified, and only attributes
that differ from those provided by its parent are added. An
inheritance relation is then created between the new module’s
instance table, and the parent module’s instance table. This
means that all of the parent module’s attributes then become
available to instances of the child module.

VI. USE CASE EXAMPLES

Since the Integra XML file format, database schema and
associated protocols are currently under development, it has
not seemed prudent to develop ‘finished’ migrations of existing
works using the system, or to construct new works that
rely on the system in performance. However a range of
works have been transferred to new technology as part of the
Integra project, and these serve as an essential support for the
continuing development of the Integra framework. The Integra
library and protocols also form the basis of a number of other
systems. Some of these will outlined briefly in the following
sections.

A. Integra GUI

The Integra GUI is a central aspect of the Integra project,
and forms one of the primary reasons for the libIntegra
development. The purpose of the GUI is to provide a powerful
but simple interface for musicians to work with live electronics
and develop their ideas. So far a prototype GUI has been de-
veloped, and this has served as useful testbed for establishing
the utility of the libIntegra library as providing a foundation
for usable software.

B. Madonna of Winter and Spring

This was one of the first works to be ported for Integra. It
initially formed part of the ‘Harvey Project’ (now the FreeX7
project!®), which predates the Integra project. The migration
of Madonna of Winter of Spring is described in detail in
[71, but to summarise, the most significant technical problems
posed by the work centre on the emulation of a Yamaha
TX816 and Yamaha DX1, both of which are based on the
Yamaha DX7 synthesis model. The work was ported to the Pd
environment using a bespoke Pd-based DSSI plugin host, and
the open source Hexter DX7 emulation plugin. Subsequently,
the TX816, DX1 and DX7 synthesisers have been made into
Integra-compliant modules, instantiable using libIntegra, and
addressable using an Integra DX namespace. The DX7 and
TX816 namespaces are available via the Integra wiki!!, and
the respective modules can be accessed through the Integra
subversion repository .

C. Other projects

The Integra library has been used in the PhD work of two
of the current authors. It forms the ‘backend’ for the Sonar
2D'3 application by Jamie Bullock, providing DSP module in-
stantiation, management and persistent storage. It is also being

1Ohttp://www.conservatoire bcu.ac.uk/freex7
http://wiki.integralive .org/modules:dx7
2http://svn.integralive.org
Bhttp://postlude.co.uk/Software/Sonar2D

used by Henrik Frisk in the documentation, presentation and
implementation of a number of pieces included in his artistic
PhD thesis. These projects have served as an excellent ‘real
world’ test-bed for the library’s functionality and experiences
are fed back into the development.

VII. PROJECT STATUS

Integra is currently hosted on Sourceforge'*. We have a
small but active developer community which is growing slowly
as the project progresses. The Integra environment is the core
goal of the development strand of the Integra project, and seeks
to provide a complete, expandable and sustainable solution to
compose and perform music with interactive live electronics.
libIntegra and a bespoke GUI for the Integra environment are
currently in pre-alpha development.

A. Future work

One of current priorities is to populate the Integra database
with a large number of module definitions and implemen-
tations. However, we would like to keep the amount of
implementation-specific data we store to an absolute mini-
mum. The first step in this has been to separate out the module
definition, namespace (derived from the definition), instance
data, and implementation. We would now like to explore
ways of storing the data encoded by the implementation in
a software-neutral manner. One way to do this might be to
create a set of implementation primitives, and then create
more complex modules from these using Integra collections
as an encapsulation mechanism. Another possibility would be
to create a simple Integra scripting language that could be
used in addition to module encapsulation, or alongside a DSP
description language such as Faust [2]

VIII. CONCLUSION

We have outlined a new XML-based file format for
storing data relating to live electronic music. The format
is environment-neutral, and is closely coupled with an in-
memory representation used by the libIntegra library and a per-
sistent representation that uses an object-relational database.
In addition we have suggested the libIntegra library as the de-
facto means for accessing and manipulating Integra modules,
and interfacing with specific audio software environments. The
next stage in our work will entail a phase of alpha and beta
testing, both internally and with our end users. The aim of
the Integra project is to improve the usability of software
for working with live electronics, and to provide a robust
mechanism for the sustainability of existing repertoire and new
musical works. libIntegra and its associated file formats should
ultimately provide a foundation for this.

REFERENCES

[1] Orlarey, Y. and Fober, D. and Letz, S. ”Syntactical and semantical
aspects of FaustSoft Computing” Soft Computing - A Fusion of
Foundations, Methodologies and Applications, vol. 8, no. 9, 2004

http://sourceforge.net

(2]

(3]

(4]

(3]

Orlarey, Y. and Fober, D. and Letz, S. "An Algebra for Block
Diagram Languages” Proceedings of the International Computer
Music Conference, ICMA, USA, 2002.

Place, T. and Lossius, T. ”Jamoma: A Modular Standard for
Structuring Patches in Max” Proceedings of the International
Computer Music Conference, ICMA, USA, 2006.

Puckette, M. ”New Public-Domain Realizations of Standard Pieces
for Instruments and Live Electronics” Proceedings of the Interna-
tional Computer Music Conference, ICMA, USA, 2006.
Bachimont, B. and Blanchette, J.-F. and Gerzso, A. and Swetland,
A. and Lescurieux, O. and Morizet-Mahoudeaux, P. and Donin,

(6]

(71

N. and Teasley, J. "Preserving interactive digital music: a report
on the MUSTICA research initiative” Web Delivering of Music,
2003. 2003 WEDELMUSIC. Proceedings. Third International
Conference on Web Delivering of Music.

Bullock, J. and Frisk, H. “libIntegra: a system for software-
independent multimedia module description and storage” Proceed-
ings of the International Computer Music Conference, ICMA,
Sweden, 2007.

Bullock, J. and Coccioli L. "Modernising musical works involving
Yamaha DX-based synthesis: a case study” Organised Sound
11(3), Cambridge University Press, UK, 2006

https://www.researchgate.net/publication/4368662

